Электроны по слоям. Принципы распределения электронов в атоме

Энергетическое состояние и расположение электронов в оболочках или слоях атомов определяют четырьмя числами, которые называются квантовыми и обычно обозначаются символами n, l, s и j; квантовые числа имеют, прерывный, или дискретный, характер, т. е. могут получать только отдельные, дискретные, значения, целые или полуцелые.

По отношению к квантовым числам п, l, s и j необходимо еще иметь в виду следующее:

1. Квантовое число n называется главным; оно общее для всех электронов, входящих в состав одной и той же электронной оболочки; иначе говоря, каждой из электронных оболочек атома отвечает определенное значение главного квантового числа, а именно: для электронных оболочек К, L, М, N, О, Р и Q главные квантовые числа равны соответственно 1, 2, 3, 4, 5, 6 и 7. В случае одноэлектроиного атома (атом водорода) главное квантовое число служит для определения орбиты электрона и одновременно энергии атома при стационарном состоянии.

2. Квантовое число I называется побочным, или орбитальным, и определяет момент количества движения электрона, вызванного его вращением вокруг атомного ядра. Побочное квантовое число может иметь значения 0, 1, 2, 3, . . . , а в общем виде обозначается символами s, р, d, f, . . . Электроны, имеющие одно и то же побочное квантовое число, образуют подгруппу, или, как часто говорят, находятся на одном и том же энергетическом подуровне.

3. Квантовое число s часто называют спиновым, так как оно определяет момент количества движения электрона, вызванного его собственным вращением (момент спина).

4. Квантовое число j называется внутренним и определяется суммой векторов l и s.

Распределение электронов в атомах (атомных оболочках) следует также некоторым общим положениям, из них необходимо указать:

1. Принцип Паули, согласно которому в атоме не может быть больше одного электрона с одинаковыми значениями всех четырех квантовых чисел, т. е. два электрона в одном и том же атоме должны различаться между собой значением хотя бы одного квантового числа.

2. Принцип энергетический, согласно которому в основном состоянии атома все его электроны должны находиться на наиболее низких энергетических уровнях.

3. Принцип количества (числа) электронов в оболочках, согласно которому предельное число электронов в оболочках не может превышать 2n 2 , где n - главное квантовое число данной оболочки. Если число электронов в некоторой оболочке достигает предельного значения, то оболочка оказывается заполненной и в следующих элементах начинает формироваться новая электронная оболочка.

В соответствии с тем, что было сказано, в таблице ниже даны: 1) буквенные обозначения электронных оболочек; 2) соответствующие значения главных и побочных квантовых чисел; 3) символы подгрупп; 4) теоретически рассчитанное наибольшее число электронов как в отдельных подгруппах, так и в оболочках в целом. Необходимо указать, что в оболочках К, L и М число электронов и их распределение по подгруппам, определенные из опыта, вполне отвечают теоретическим вычислениям, но в следующих оболочках наблюдаются значительные расхождения: число электронов в подгруппе f достигает предельного значения только в оболочке N, в следующей оболочке оно уменьшается, а затем исчезает и вся подгруппа f.

Оболочка

Подгруппа

Число электронов в подгруппе

Число электронов в оболочке (2n 2)

В таблице даны число электронов в оболочках и их распределение по подгруппам для всех химических элементов, в том числе и трансурановых. Числовые данные этой таблицы были установлены в результате очень тщательных спектроскопических исследований.

1-й период

2-й период

3-й период

4-й период

5-й период

6-й период

7-й период

_______________

Источник информации: КРАТКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ СПРАВОЧНИК/ Том 1, - М.: 1960.

При распределении электронов по квантовым ячейкам следует руководство-
ваться принципом Паули: в атоме не может быть двух электронов с одинаковым
набором значений всех квантовых чисел, т. е. атомная орбиталь не может содер-
жать более двух электронов, причем их спиновые моменты должны быть проти-
воположными

Система обозначений в общем виде выглядит так:

где п − главное, ℓ − орбитальное квантовые числа; х − количество электронов,
находящихся в данном квантовом состоянии. Например, запись 4d3 может быть
истолкована следующим образом: три электрона занимают четвертый энергетиче-
ский уровень, d- подуровень.

Характер застройки энергетических подуровней определяет принадлежность
элемента к тому или иному электронному семейству.

В s-элементах происходит застройка внешнего s-подуровня, например,

11 Na 1s2 2s2 2p6 3s1
В р-элементах происходит застройка внешнего р-подуровня, например,

9 F 1s 2s2 2p5 .

К s- и p- семействам относятся элементы главных подгрупп периодической табли-
цы Д. И. Менделеева.

В d-элементах происходит застройка d-подуровня предпоследнего уровня,
например,
2 2 6 2 6 2 2
22Ti 1s 2s 2p 3s 3p 3d 4s .

К d-семейству относятся элементы побочных подгрупп. Валентными у этого се-
мейства являются s-электроны последнего энергетического уровня и d-электроны
предпоследнего уровня.

В f-элементах происходит застройка f-подуровня третьего наружного уровня,
например,

58Се 1s22s22p63s23p63d l04s24p64d l04f l5s25p65d16s2.

Представителями f-электронного семейства являются лантаноиды и актиноиды.

Квантовое число может принимать два значения: Поэтому в состояниях с данным значением могут находиться в атоме не более электронов:

Основы зонной теории

Согласно постулатам Бора, в изолированном атоме энергия электрона может принимать строго дискретные значения (также говорят, что электрон находится на одной из орбиталей).

В случае нескольких атомов, объединенных химической связью (например, в молекуле), электронные орбитали расщепляются в количестве, пропорциональном числу атомов, образуя так называемые молекулярные орбитали. При дальнейшем увеличении системы до макроскопического кристалла (число атомов более 10 20), количество орбиталей становится очень большим, а разница энергий электронов, находящихся на соседних орбиталях, соответственно очень маленькой, энергетические уровни расщепляются до практически непрерывных дискретных наборов - энергетических зон. Наивысшая из разрешённых энергетических зон в полупроводниках и диэлектриках, в которой при температуре 0 К все энергетические состояния заняты электронами, называется валентной зоной, следующая за ней - зоной проводимости. В металлах зоной проводимости называется наивысшая разрешённая зона, в которой находятся электроны при температуре 0 К.

В основе зонной теории лежат следующие главные приближения :

1. Твёрдое тело представляет собой идеально периодический кристалл.

2. Равновесные положения узлов кристаллической решётки фиксированы, то есть ядра атомов считаются неподвижными (адиабатическое приближение). Малые колебания атомов вокруг равновесных положений, которые могут быть описаны какфононы, вводятся впоследствии как возмущение электронного энергетического спектра.

3. Многоэлектронная задача сводится к одноэлектронной: воздействие на данный электрон всех остальных описывается некоторым усредненным периодическим полем.

Ряд явлений, по существу многоэлектронных, таких, как ферромагнетизм, сверхпроводимость, и таких, где играют роль экситоны, не может быть последовательно рассмотрен в рамках зонной теории. Вместе с тем, при более общем подходе к построению теории твёрдого тела оказалось, что многие результаты зонной теории шире её исходных предпосылок.

Фотопроводимость.

Фотопроводи́мость - явление изменения электропроводности вещества при поглощении электромагнитного излучения, такого как видимое, инфракрасное, ультрафиолетовое или рентгеновское излучение.

Фотопроводимость свойственна полупроводникам. Электропроводность полупроводников ограничена нехваткой носителей заряда. При поглощении фотона электрон переходит из валентной зоны в зону проводимости. Как следствие образуется пара носителей заряда: электрон в зоне проводимости и дырка в валентной зоне. Оба носителя заряда при приложении к полупроводнику напряжения создают электрический ток.

При возбуждении фотопроводимости в собственном полупроводнике энергия фотона должна превышать ширину запрещенной зоны. В полупроводнике с примесями поглощение фотона может сопровождаться переходом из расположенного в запрещённой зоне уровня, что позволяет увеличить длину волны света, который вызывает фотопроводимость. Это обстоятельство важно для детектирования инфракрасного излучения. Условием высокой фотопроводимости является также большойпоказатель поглощения света, который реализуется в прямозонных полупроводниках

Квантовые явления

37) Строение ядра и радиоактивность

А́томное ядро́ - центральная часть атома, в которой сосредоточена основная его масса (более 99,9 %). Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относят атом. Размеры ядер различных атомов составляют несколько фемтометров, что более чем в 10 тысяч раз меньше размеров самого атома.

оличество протонов в ядре называется его зарядовым числом - это число равно порядковому номеру элемента, к которому относится атом, в таблице (Периодической системе элементов) Менделеева. Количество протонов в ядре определяет структуру электронной оболочки нейтрального атома и, таким образом, химические свойства соответствующего элемента. Количество нейтронов в ядре называется его изотопическим числом . Ядра с одинаковым числом протонов и разным числом нейтронов называются изотопами. Ядра с одинаковым числом нейтронов, но разным числом протонов - называются изотонами. Термины изотоп и изотон используются также применительно к атомам, содержащим указанные ядра, а также для характеристики нехимических разновидностей одного химического элемента. Полное количество нуклонов в ядре называется его массовым числом () и приблизительно равно средней массе атома, указанной в таблице Менделеева. Нуклиды с одинаковым массовым числом, но разным протон-нейтронным составом принято называть изобарами.

Радиоакти́вный распа́д (от лат. radius «луч» и āctīvus «действенный») - спонтанное изменение состава (заряда Z , массового числа A ) или внутреннего строения нестабильных атомных ядер путём испусканияэлементарных частиц, гамма-квантов и/или ядерных фрагментов . Процесс радиоактивного распада также называют радиоакти́вностью , а соответствующие ядра (нуклиды, изотопы и химические элементы) радиоактивными. Радиоактивными называют также вещества, содержащие радиоактивные ядра.

Каждой атомной орбитали отвечает определенная энергия. Порядок следования АО по энергии определяется двумя правилами Клечковского:

1) энергия электрона в основном определяется значениями главного (n) и орбитального (l ) квантовых чисел, поэтому сначала электронами заполняются те подуровни, для которых сумма (n + l ) меньше .

Например, можно было бы предположить, что 3d-подуровень по энергии ниже, чем 4s. Однако, согласно правилу Клечковского, энергия 4s-состояния меньше, чем 3d, так как для 4s сумма (n + l ) = 4 + 0 = 4, а для 3d - (n + l ) = 3 + 2 = 5.

2) В случае, если сумма (n + l ) для двух подуровней одинакова (например, для 3d- и 4p-подуровней эта сумма равна 5), сначала заполняется электронами уровень с меньшим n . Поэтому формирование энергетических уровней атомов элементов четвертого периода происходит в такой последовательности: 4s - 3d - 4p. Например:

21 Sc 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1 , 31 Ga 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 1

Таким образом, с учетом правил Клечковского энергия атомных орбиталей возрастает согласно ряду

1s < 2s < 2p < 3 < 3p < 4s 3d < 4p < 5s ≤ 4d < 5p < 6s ≤ 4f ≤ 5d < 6p < 7s ≤ 5f ≤ 6d < 7p

Примечание. Знак ≤ означает, что энергии АО близки, так что здесь возможно нарушение правил Клечковского.

Пользуясь этим рядом, можно определить электронное строение любого атома. Для этого нужно последовательно добавлять и размещать на подуровнях и атомных орбиталях электроны. При этом необходимо учитывать принцип Паули и два правила Хунда.

3. Принцип Паули определяет емкость АО: в атоме не может быть двух электронов с одинаковым набором всех четырех квантовых чисел.

Иными словами, на одной АО, характеризуемой тремя квантовыми числами, может разместиться только два электрона с противоположными спинами, т.е. для одной АО можно записать два возможных варианта её заполнения:


одним электроном и двумя электронами ↓ .

При этом конкретное направление спина для одного электрона на орбитали не имеет значения, важно лишь, что спины для двух электронов на одной АО имеют противоположные знаки. Принцип Паули и взаимозависимость между значениями n, l , и m определяют максимально возможное количество электронов на орбитали, подуровне и уровне (табл. 2.4):

-на одной АО - 2 электрона;

- на подуровне l - 2(2l+1) электрона;

- на уровне n - 2n 2 электронов.

Таблица 2.4

Распределение электронов

по энергетическим уровням, подуровням и орбиталям

Энергетический уровень Главное квантовоечисло Энергетический подуровень Атомные орбитали Максимальное число электронов
подуровень уровень
1 s (l = 0)
s (l = 0)
2 p (l = 1)
s (l = 0)
3 p (l = 1)
d (l =2)

4. Два правила Хунда описывают порядок заполнения электронами АО одного подуровня:

Первое правило:в данном подуровне электроны стремятся заполнять энергетические состояния (АО) таким образом, чтобы сумма их спинов по абсолютной величине была максимальна . При этом энергия системы минимальна.

Например, рассмотрим электронную конфигурацию атома углерода. Атомный номер этого элемента равен 6. Это означает, что в атоме 6 электронов и они расположены на 2-х энергетических уровнях (атом углерода находится во втором периоде), т.е. 1s 2 2s 2 2p 2 . Графически 2р-подуровень можно изобразить тремя способами:

m 0 0 +1 0 -1 0 0 +1 0 -1 0 0 +1 0 -1

А б в

Сумма спинов в варианте а равна нулю. В вариантах б и в сумма спинов равна: ½ +½ = 1 (два спаренных электрона в сумме всегда дают ноль, поэтому учитываем неспаренные электроны).

При выборе между вариантами б ив руководствуемся вторым правилом Хунда: минимальной энергией обладает состояние с максимальной (по абсолютной величине) суммой магнитных квантовых чисел.

В соответствии с правилом Гунда, преимуществом обладает вариант б (сумма |1+ 0| равна 1) , так как в варианте в сумма |+1–1| равна 0.

Определим, например, электронную формулу элемента ванадия (V). Так как его атомный номер Z = 23, то нужно разместить на подуровнях и уровнях (их четыре, так как ванадий находится в четвертом периоде) 23 электрона. Последовательно заполняем: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 3 (подчеркнуты незаконченные уровни и подуровни). Размещение электронов на 3d –АО по правилу Гунда будет:

Для селена (Z = 34) полная электронная формула: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 4 , незаконченным является четвёртый уровень.

Заполнение этого подуровня по правилу Гунда: 4p

Особую роль в химии играют электроны последних незаполненных уровней и подуровней, которые называются валентными (в формулах V, Se – подчеркнуты). Например, у ванадия это электроны незаполненного четвертого уровня 4s 2 и незаполненного подуровня 3d 3 , т.е. валентными будет 5 электронов 4s 2 3d 3 ; у селена 6 электронов - 4s 2 4p 4 .

По названию последнего заполняемого подуровня элементы называются s-элементами, р-элементами, d-элементами и f-элементами.

Найденные по описанным правилам формулы валентных электронов называются каноническими . В действительности реальные формулы, определяемые из эксперимента или квантовомеханическим расчетом, несколько отличаются от канонических, т.к. правила Клечковского, принцип Паули и правила Гунда иногда нарушаются. Причины этих нарушений рассмотрены ниже.

Пример 1 . Записать электронную формулу атома элемента с атомным номером 16. Валентные электроны изобразить графически и один из них охарактеризовать квантовыми числами.

Решение . Атомный номер 16 имеет атом серы. Следовательно, заряд ядра равен 16, в целом атом серы содержит 16 электронов. Электронная формула атома серы записывается: 1s 2 2s 2 2p 6 3s 2 3p 4 . (Подчеркнуты валентные электроны).

Графическая формула валентных электронов:

Состояние каждого электрона в атоме характеризуется четырьмя квантовыми числами. Электронная формула дает значения главного квантового числа и орбитального квантового числа. Так, для отмеченного электрона состояние 3p означает, что n = 3 и l = 1(р). Графическая формула дает значение еще двух квантовых чисел - магнитного и спинового. Для отмеченного электрона m = -1 и s = 1 / 2.

Пример 2 . Охарактеризовать валентные электроны атома скандия четырьмя квантовыми числами.

Решение . Скандий находится в 4-м периоде, т.е. последний квантовый слой - четвертый, в 3-й группе, т.е. три валентных электрона.

Электронная формула валентных электронов: 4s 2 3d 1 .

Графическая формула:

Первый способ : Электроны легко можно распределить по подуровням исходя из некоторых правил. Во первых нужна цветная таблица. Представим каждый элемент как один новый электрон, Каждый период – это соответствующий уровень, s.p-электроны всегда в своём периоде, d-электроны на уровень ниже (3 d-электроны в гостях в 4-ом периоде), f-электроны на 2 уровня ниже. Просто берём таблицу и читаем исходя из цвета элемента, у s, p- элементов номер уровня соответствует номеру периода, если доходим до d-элемента пишем уровень на один меньше, чем номер периода, в котором этот элемент находится (если элемент в 4-м периоде, следовательно, 3 d). Также поступаем и с f-элементом, только уровень указываем меньше чем номер периода на 2 значения (если элемент в 6-м периоде, следовательно, 4 f).

Второй способ : Нужно отобразить все подуровни в виде одной клеточки, и уровни расположить друг под другом симметрично подуровень под подуровнем. В каждой ячейке написать максимальное количество электронов данного подуровня. И последним этапом нанизать подуровни по диагонали (от верхнего уголка к нижнему) стрелой. Считывать подуровни сверху вниз в сторону кончика стрелы, до количества электронов нужного атома.

Скачать:


Предварительный просмотр:

Мастер класс на тему: «Порядок заполнения электронами энергетических уровней атомов».

Цель занятия: Рассмотреть варианты более быстрой формы записи краткой электронной конфигурации атома.

В зависимости от того, какой подуровень в атоме заполняется в последнюю очередь, все химические элементы делятся на 4 электронных семейства: s-, p-, d-, f-элементы. Элементы, у атомов которых в последнюю очередь заполняется s-подуровень внешнего уровня, называются s-элементами. У s-элементов валентными являются s-электроны внешнего энергетического уровня. У р-элементов последним заполняется р-подуровень внешнего уровня. У них валентные электроны расположены на p- и s-подуровнях внешнего уровня. У d-элементов в последнюю очередь заполняется d-подуровень предвнешнего уровня и валентными являются s-электроны внешнего и d-электроны предвнешнего энергетического уровней. У f-элементов последним заполняется f-подуровень третьего снаружи энергетического уровня.

Электронная конфигурация атома может быть изображена также в виде схем размещения электронов в квантовых ячейках, которые являются графическим изображением атомной орбитали. В каждой квантовой ячейке может быть не более двух электронов с противоположно направленными спинами ↓ . Порядок размещения электронов в пределах одного подуровня определяется правилом Хунда: в пределах подуровня электроны размещаются так, чтобы их суммарный спин был максимальным. Иными словами, орбитали данного подуровня заполняются сначала по одному электрону с одинаковыми спинами, а затем по второму электрону с противоположными спинами.

Для записи электронной конфигурации атома можно применить несколько способов.

Первый способ:

Для выбранного элемента по его местоположению в периодической таблице химических элементов Д.И.Менделеева можно записать матрицу строения электронной оболочки атома, соответствующую данному периоду.

Например , элемент иод: 127 53 I 1s2s2p3s3p3d4s4p4d4f5s5p5d5f

По таблице, последовательно переходя от элемента к элементу, можно заполнить матрицу в соответствии с порядковым номером элемента и порядком заполнения подуровней:

127 53 I 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 0 5s 2 5p 5 5d 0 5f 0

Но, подуровни заполняются в последовательности s-f-d-p, и при использовании данного способа мы не наблюдаем поочерёдности в заполнении электронных оболочек.

Второй способ:

Можно рассмотреть порядок заполнения уровней и подуровней электронами, используя понятия основного принципа - принципа наименьшего запаса энергии: наиболее устойчиво состояние атома, при котором его электроны имеют наименьшую энергию.

Т.е. основываясь на Запрете Паули, Правилах Хунда и Клечковского

Запрет Паули : в атоме не может быть двух электронов, четыре квантовых числа которых одинаковы (т.е. каждая атомная орбиталь не может быть заполнена более чем двумя электронами, причем с антипараллельными спинами.)

Правило Хунда : электроны располагаются на одинаковых орбиталях таким образом, чтобы суммарное спиновое число их было максимальным, т.е. наиболее устойчивому состоянию атома соответствует максимально возможное число неспаренных электронов с одинаковыми спинами.

Правила Клечковского : А) Заполнение электронных слоев электронами начинается с уровней и подуровней, обладающими самыми низкими значениями n и l, и идет в порядке возрастания n+l;

Б) Если для двух орбиталей сумма n+l окажется одинаковой, то в первую очередь электронами заполняется орбиталь с меньшим значением n.

Первый случай не показывает последовательность заполнения подуровней, а второй- требует время для построения таблицы.

Таблица № 2

Порядок заполнения электронами энергетических уровней атомов.

Квантовые числа

Сумма квантовых чисел

n + l

Заполняемая орбиталь

При распределении электронов в атоме К в соответствии с правилом Клечковского предпочтение отдается орбитали 4s

Следовательно, для атома калия распределение электронов по орбиталям (электронно-графическая формула) имеет вид

Скандий относится к d-элементам, и его атом характеризуется следующим распределением электронов по орбиталям:

Исходя из правила Клечковского мы видим порядок последовательного заполнения подуровней. Первый случай не показывает последовательность заполнения подуровней, а второй - требует время для построения таблицы. Поэтому я вам предлагаю более приемлемые варианты последовательного заполнения орбиталей.

Первый способ : Электроны легко можно распределить по подуровням исходя из некоторых правил. Во первых нужна цветная таблица. Представим каждый элемент как один новый электрон, Каждый период – это соответствующий уровень, s.p-электроны всегда в своём периоде, d-электроны на уровень ниже (3 d-электроны в гостях в 4-ом периоде), f-электроны на 2 уровня ниже. Просто берём таблицу и читаем исходя из цвета элемента, у s, p- элементов номер уровня соответствует номеру периода, если доходим до d-элемента пишем уровень на один меньше, чем номер периода, в котором этот элемент находится (если элемент в 4-м периоде, следовательно, 3 d). Также поступаем и с f-элементом, только уровень указываем меньше чем номер периода на 2 значения (если элемент в 6-м периоде, следовательно, 4 f).

Второй способ : Нужно отобразить все подуровни в виде одной клеточки, и уровни расположить друг под другом симметрично подуровень под подуровнем. В каждой ячейке написать максимальное количество электронов данного подуровня. И последним этапом нанизать подуровни по диагонали (от верхнего уголка к нижнему) стрелой. Считывать подуровни сверху вниз в сторону кончика стрелы, до количества электронов нужного атома.

СОСТАВ И ЭЛЕКТРОННАЯ
СТРУКТУРА АТОМА

МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ
К ОБУЧАЮЩЕЙ ПРОГРАММЕ ДЛЯ УЧАЩИХСЯ
СПЕЦИАЛИЗИРОВАННЫХ КЛАССОВ
ОБЩЕОБРАЗОВАТЕЛЬНЫХ ШКОЛ

Продолжение. Начало см. в № 4, 6/2005

Методические указания

17. Учитывая описанные закономерности, рассмотрите состояние и распределение электронов по энергетическим уровням и орбиталям для атомов калия (Z = 19) и скандия (Z = 21).

Решение

1) Предшествующий калию в ПСХЭ элемент аргон (Z = 18) имеет следующее распределение электронов:

а) по уровням атома:

б) по орбиталям атома:

Электронная формула атома аргона:

Электронно-графическая формула атома аргона:

При распределении электронов в атоме К в соответствии с правилом Клечковского предпочтение отдается орбитали 4s (сумма квантовых чисел n + l равна: 4 + 0 = 4) по сравнению с орбиталью 3d (сумма квантовых чисел n + l равна: 3 + 2 = 5) как орбитали, имеющей минимальное значение n + l. Следовательно, для атома калия распределение электронов по орбиталям (электронно-графическая формула) имеет вид (см. п. 16 методических указаний):

Калий относится к s -элементам со следующей электронной формулой (конфигурацией) атома:

Распределение электронов по энергетическим уровням для атома К изображено ниже:

2) Предшествующий скандию в ПСХЭ элемент кальций (Z = 20) имеет следующее распределение электронов:

а) по уровням атома:

б) по орбиталям атома:

Электронная формула атома кальция:

Из орбиталей 3d (n + l равно: 3 + 2 = 5) и 4p (n + l равно: 4 + 1 = 5) при распределении электронов в атоме скандия по орбиталям предпочтение следует отдать 3d -орбитали как имеющей минимальное значение n = 3 при одинаковых суммах квантовых чисел (n + l ), равных пяти. Следовательно, скандий относится к d -элементам, и его атом характеризуется следующим распределением электронов по орбиталям:

Электронная формула атома скандия:

Распределение электронов по энергетическим уровням для атома Sc изображено ниже:

18. Дополните рисунок так, чтобы показать вид одной s -орбитали и трех р -орбиталей, ориентированных вдоль осей.

Таблица 5

Распределение электронов
по квантовым уровням и подуровням

Оболочка Энергетический
уровень n
Энергетический
подуровень l
Магнитное
число m
Число
орбиталей
Предельное
число
электронов
K 1 0 (s) 0 1 2
L 2 0 (s)
1 (p)
+1, 0, –1
1
3
4
2
6
8
M 3 0 (s)
1 (p)
2 (d)
0

1, 0, –1
+2, +1, 0, –1, –2

1
3
5
9
2
6
10
18
N 4 0 (s)
1 (p)
2 (d)
3 (f)
0
+1, 0, –1
+2, +1, 0, –1, –2
+3, +2, +1, 0, –1, –2, –3
1
3
5
7
16
2
6
10
14
32

20. Последовательность заполнения энергетических уровней атомов см. в табл. 6.

21. Число элементов в периоде таблицы Д.И.Менделеева определяется формулами:

а) для нечетных периодов:

L n = (n + 1) 2 /2,

б) для четных периодов:

L n = (n + 2) 2 /2,

где L n – число элементов в периоде, n – номер периода.

Определите число элементов в каждом периоде ПСХЭ Д.И.Менделеева.

Объясните:

а) полученную числовую закономерность с позиций состояния электронов в атомах и их распределения по энергетическим уровням;

б) разделение групп элементов на главные и побочные подгруппы;

в) предопределенность числа главных и побочных подгрупп в ПСХЭ Д.И.Менделеева с точки зрения теории строения атомов.

Проверьте в дальнейшем свои выводы по приложению 1 (П-21).

22. Строгая периодичность расположения элементов в ПСХЭ Д.И.Менделеева полностью объясняется последовательным заполнением энергетических уровней атомов (см. выше п. 20). Укреплению позиций периодического закона на основе закономерностей изменения электронной структуры атомов элементов, впервые предсказанных Н.Бором, способствовало открытие 72-го элемента. Еще не открытый тогда элемент химики искали среди минералов, содержащих редкоземельные элементы, исходя из неправильной предпосылки, что к лантаноидам следует отнести 15 элементов.

По аналогии с переходными элементами число лантаноидов (элементы № 58–71) должно быть равно разности между максимальными числами электронов на N и М энергетических уровнях
(32 – 18 = 14), т. е. равно максимальному числу электронов на f -подуровне (см. выше п. 19). Элемент с Z = 72 (гафний Hf) является аналогом циркония Zr и был обнаружен в циркониевых рудах.

23. Следующим важным выводом из анализа табл. 6 в п. 20 является вывод о периодичности заполнения электронами внешних энергетических уровней атомов, чем обусловлена периодичность изменения химических свойств элементов и их соединений.

Таблица 6

Электронные конфигурации атомов
первых 20 элементов периодической системы

Атомный
номер
Обоз-
начение
Слой K L M N
n 1 2 3 4
l 0 0, 1 0, 1, 2 0, 1, 2, 3
Подуровень 1s 2s , 2p 3s , 3p , 3d 4s , 4p , 4d , 4f
Число электронов на данном подуровне
1
2
H
He
1
2
3
4
5
6
7
8
9
10
Li
Be
B
C
N
O
F
Ne
2
2
2
2
2
2
2
2
1, 0
2, 0
2, 1
2, 2
2, 3
2, 4
2, 5
2, 6
11
12
13
14
15
16
17
18
Na
Mg
Al
Si
P
S
Cl
Ar
2
2
2
2
2
2
2
2
2, 6
2, 6
2, 6
2, 6
2, 6
2, 6
2, 6
2, 6
1, 0, 0
2, 0, 0
2, 1, 0
2, 2, 0
2, 3, 0
2, 4, 0
2, 5, 0
2, 6, 0
19
20
K
Ca
2
2
2, 6
2, 6
2, 6, 0
2, 6, 0
1, 0, 0, 0
2, 0, 0, 0

Так, второй период таблицы Д.И.Менделеева состоит из восьми элементов со следующими подуровнями:

3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne
1s 2 2s 1 1s 2 2s 2 1s 2 2s 2 2p 1 1s 2 2s 2 2p 2 1s 2 2s 2 2p 3 1s 2 2s 2 2p 4 1s 2 2s 2 2p 5 1s 2 2s 2 2p 6

При переходе от лития к неону заряд ядра атома постепенно увеличивается от Z = 3 до Z = 10, а значит, возрастают силы притяжения электронов к ядру, и в результате радиусы атомов этих элементов уменьшаются. Поэтому способность атома отдавать электроны (типично металлическое свойство), ярко выраженная у атома лития, постепенно ослабевает при переходе от лития к фтору. Последний является типичным неметаллом, т. е. элементом более, чем другие, способным присоединять электроны.

Начиная со следующего за неоном элемента (Na, Z = 11) электронные структуры атомов повторяются, и поэтому электронные конфигурации их внешних электронных оболочек обобзначаются сходным образом (n – номер периода):

ns 1 (Li, Na), ns 2 (Be, Mg), ns 2 np 1 (B, Al), ns 2 np 2 (C, Si) и т. д.

В четвертом периоде таблицы Д.И.Менделеева появляются переходные элементы, принадлежащие побочным подгруппам.

24. Элементы, принадлежащие одной и той же подгруппе, имеют сходный характер расположения электронов на внешних электронных уровнях атомов. Например, атомы галогенов (главная подгруппа VII группы) все имеют электронную конфигурацию ns 2 np 5 , а атомам элементов побочной подгруппы той же группы свойственна электронная конфигурация (n – 1)s 2 (n – 1)p 6 (n – 1)d 5 ns 2 .

В чем заключается суть сходства и различия атомов элементов, принадлежащих разным подгруппам одной и той же группы таблицы Д.И.Менделеева? Свои выводы в дальнейшем сверьте с приложением 1 (П-24).

25. Численное значение валентности атома, определяемое числом образованных им ковалентных химических связей, отражает положение элемента в ПСХЭ Д.И.Менделеева. Во многих случаях валентность атома элемента в соединении численно равна номеру группы в ПСХЭ Д.И.Менделеева. Однако из этого правила существуют исключения. Например, у атома фосфора на внешнем (третьем, М ) энергетическом уровне находятся три неспаренных электрона (3р -орбитали) и свободные валентные ячейки d -орбиталей. Следовательно, для атома фосфора характерно так называемое возбуждение электрона, связанное c распариванием электронной пары и переходом одного их образующихся неспаренных электронов на 3d -орбиталь. Для возбужденного состояния атома фосфора возможно образование пяти ковалентных связей, а для основного – только трех.

Для атома азота возбужденное состояние нетипично, поскольку в этом атоме на внешнем энергетическом уровне количество и состояние электронов такое же, как в атоме фосфора, но вакантных ячеек нет, и для завершения и устойчивости этого уровня недостает всего трех электронов.

Почему же тогда максимальная валентность атома азота в соединениях (т.е. способность к образованию общих электронных пар) все же не III, а IV?

26. Повторив пп. 16, 17 методической разработки, можно объяснить порядок заполнения электронами энергетических уровней в атомах элементов 4-го большого периода ПСХЭ Д.И.Менделеева. Четный ряд этого периода начинается элементами главных подгрупп – 39 К и 40 Са, являющимися типичными металлами с постоянной валентностью, а уже с элемента № 21 (Z = 21, Sс) далее идут элементы побочных подгрупп, называемые d- элементами или переходными. Попробуйте объяснить суть этих названий, привести соответствующие примеры. Правильность своих выводов в дальнейшем сверьте с приложением 1 (П-26).

27. Химический знак водорода Н в ПСХЭ Д.И.Менделеева помещают и в главную подгруппу
I группы, и в главную подгруппу VII группы. Почему это допустимо? Проверьте в дальнейшем правильность своих выводов по приложению 1 (П-27).