Нейрофизиологические механизмы стресса. Нейрофизиологические механизмы внимания

В формировании и осуществлении высших функций мозга очень важное значение имеет общебиологическое свойство фиксации, хранения и воспроизведения информации, объединяемое понятием память. Память как основа процессов обучения и мышления включает в себя четыре тесно связанных между собой процесса: запоминание, хранение, узнавание, воспроизведение. На протяжении жизни человека его память становится вместилищем огромного количества информации: в течение 60 лет активной творческой деятельности человек способен воспринять 1013- 10 бит информации, из которой реально используется не более 5-10 %. Это указывает на значительную избыточность памяти и важное значение не только процессов памяти, но и процесса забывания. Не все, что воспринимается, переживается или делается человеком, сохраняется в памяти, значительная часть воспринятой информации со временем забывается. Забывание проявляется в невозможности узнать, припомнить что-либо или в виде ошибочного узнавания, припоминания. Причиной забывания могут стать разные факторы, связанные как с самим материалом, его восприятием, так и с отрицательными влияниями других раздражителей, действующих непосредственно вслед за заучиванием (феномен ретроактивного торможения, угнетения памяти). Процесс забывания в значительной мере зависит от биологического значения воспринимаемой информации, вида и характера памяти. Забывание в ряде случаев может носить положительный характер, например память на отрицательные сигналы, неприятные события. В этом справедливость мудрого восточного изречения: «Счастью память отрада, горю забвение друг».

В результате процесса научения возникают физические, химические и морфологические изменения в нервных структурах, которые сохраняются некоторое время и оказывают существенное влияние на осуществляемые организмом рефлекторные реакции. Совокупность таких структурно-функциональных изменений в нервных образованиях, известная под названием «энграмма» (след) действующих раздражителей становится важным фактором, определяющим все разнообразие приспособительного адаптивного поведения организма.

Виды памяти классифицируют по форме проявления (образная, эмоциональная, логическая, или словесно-логическая), по временной характеристике, или продолжительности (мгновенная, кратковременная, долговременная).

Образная память проявляется формированием, хранением и воспроизведением ранее воспринятого образа реального сигнала, его нервной модели. Под эмоциональной памятью понимают воспроизведение некоторого пережитого ранее эмоционального состояния при повторном предъявлении сигнала, вызвавшем первичное возникновение такого эмоционального состояния. Эмоциональная память характеризуется высокой скоростью и прочностью. В этом, очевидно, главная причина более легкого и устойчивого запоминания человеком эмоционально окрашенных сигналов, раздражителей. Напротив, серая, скучная информация запоминается намного труднее и быстро стирается в памяти. Логическая (словесно-логическая, семантическая) память - память на словесные сигналы, обозначающие как внешние объекты и события, так и вызванные ими ощущения и представления.



Мгновенная (иконическая) память заключается в образовании мгновенного отпечатка, следа действующего стимула в рецепторной структуре. Этот отпечаток, или соответствующая физико-химическая энграмма внешнего стимула, отличается высокой информативностью, полнотой признаков, свойств (отсюда и название «иконическая память», т. е. четко проработанное в деталях отражение) действующего сигнала, но и высокой скоростью угасания (хранится не более 100-150 мс, если не подкрепляется, не усиливается повторным или продолжающимся стимулом).

Нейрофизиологический механизм иконической памяти, очевидно, заключается в процессах рецепции действующего стимула и ближайшего последействия (когда реальный стимул уже не действует), выражаемого в следовых потенциалах, формирующихся на базе рецепторного электрического потенциала. Продолжительность и выраженность этих следовых потенциалов определяется как силой действующего стимула, так и функциональным состоянием, чувствительностью и лабильностью воспринимающих мембран рецепторных структур. Стирание следа памяти происходит за 100-150 мс.

Биологическое значение иконической памяти заключается в обеспечении анализаторных структур мозга возможностью выделения отдельных признаков и свойств сенсорного сигнала, распознавания образа. Иконическая память хранит в себе не только информацию, необходимую для четкого представления о сенсорных сигналах, поступающих в течение долей секунды, но и содержит несравненно больший объем информации, чем может быть использовано и реально используется на последующих этапах восприятия, фиксации и воспроизведения сигналов.



При достаточной силе действующего стимула иконическая память переходит в категорию краткосрочной (кратковременной) памяти. Кратковременная память - оперативная память, обеспечивающая выполнение текущих поведенческих и мыслительных операций. В основе кратковременной памяти лежит повторная многократная циркуляция импульсных разрядов по круговым замкнутым цепям нервных клеток. Кольцевые структуры могут быть образованы и в пределах одного и того же нейрона путем возвратных сигналов, образуемых концевыми (или боковыми, латеральными) разветвлениями аксонного отростка на дендритах этого же нейрона (И. С. Беритов). В результате многократного прохождения импульсов по этим кольцевым структурам в последних постепенно образуются стойкие изменения, закладывающие основу последующего формирования долгосрочной памяти. В этих кольцевых структурах могут участвовать не только возбуждающие, но и тормозящие нейроны. Продолжительность кратковременной памяти составляет секунды, минуты после непосредственного действия соответствующего сообщения, явления, предмета. Реверберационная гипотеза природы кратковременной памяти допускает наличие замкнутых кругов циркуляции импульсного возбуждения как внутри коры большого мозга, так и между корой и подкорковыми образованиями (в частности, таламокортикальные нервные круги), содержащими как сенсорные, так и гностические (обучаемые, распознающие) нервные клетки. Внутрикорковые и таламокортикальные реверберационные круги как структурная основа нейрофизиологического механизма краткосрочной памяти образованы корковыми пирамидными клетками V-VI слоев преимущественно лобных и теменных областей коры большого мозга.

Участие структур гиппокампа и лимбической системы мозга в краткосрочной памяти связано с реализацией этими нервными образованиями функции различения новизны сигналов и считывания поступающей афферентной информации на входе бодрствующего мозга. Реализация феномена краткосрочной памяти практически не требует и реально не связана с существенными химическими и структурными изменениями в нейронах и синапсах, так как для соответствующих изменений в синтезе матричных (информационных) РНК требуется большее время.

Несмотря на различия гипотез и теорий о природе краткосрочной памяти, исходной их предпосылкой является возникновение непродолжительных обратимых изменений физико-химических свойств мембраны, а также динамики медиаторов в синапсах. Ионные токи через мембрану в сочетании с кратковременными метаболическими сдвигами во время активации синапсов могут привести к изменению эффективности синаптической передачи, длящейся несколько секунд.

Превращение краткосрочной памяти в долговременную (консолидация памяти) в общем виде обусловлено наступлением стойких изменений синаптической проводимости как результат повторного возбуждения нервных клеток (обучающиеся популяции, ансамбли нейронов по Хеббу). Переход кратковременной памяти в долгосрочную (консолидация памяти) обусловленн химическими и структурными изменениями в соответствующих нервных образованиях. По данным современной нейрофизиологии и нейрохимии, в основе долговременной (долгосрочной) памяти лежат сложные химические процессы синтеза белковых молекул в клетках головного мозга. В основе консолидации памяти много факторов, приводящих к облегчению передачи импульсов по синаптическим структурам (усиленное функционирование определенных синапсов, повышение их проводимости для адекватных импульсных потоков). Одним из таких факторов может служить известный феномен посттетанической потенциации, поддерживаемый реверберирующими потоками импульсов: раздражение афферентных нервных структур приводит к достаточно длительному (десятки минут) повышению проводимости мотонейронов спинного мозга. Это означает, что возникающие при стойком сдвиге мембранного потенциала физико-химические изменения постсинаптических мембран, вероятно, служат основой для образования следов памяти, отражающихся в изменении белкового субстрата нервной клетки.

Определенное значение в механизмах долгосрочной памяти имеют и изменения, наблюдающиеся в медиаторных механизмах, обеспечивающих процесс химической передачи возбуждения с одной нервной клетки на другую. В основе пластических химических изменений в синаптических структурах лежит взаимодействие медиаторов, например ацетилхолина с рецепторными белками постсинаптической мембраны и ионами (Na+, K+, Са2+). Динамика трансмембранных токов этих ионов делает мембрану более чувствительной к действию медиаторов. Установлено, что процесс обучения сопровождается повышением активности фермента холинэстеразы, разрушающей ацетилхолин, а вещества, подавляющие действие холинэстеразы, вызывают существенные нарушения памяти.

Одной из распространенных химических теорий памяти является гипотеза Хидена о белковой природе памяти. По мнению автора, информация, лежащая в основе долговременной памяти, кодируется, записывается в структуре полинуклеотидной цепи молекулы. Разная структура импульсных потенциалов, в которых закодирована определенная сенсорная информация в афферентных нервных проводниках, приводит к разной перестройке молекулы РНК, к специфическим для каждого сигнала перемещениям нуклеотидов в их цепи. Таким образом происходит фиксация каждого сигнала в виде специфического отпечатка в структуре молекулы РНК. Исходя из гипотезы Хидена, можно предположить, что глиальные клетки, принимающие участие в трофическом обеспечении функций нейрона, включаются в метаболический цикл кодирования поступающих сигналов путем изменения нуклеотидного состава синтезирующих РНК. Весь набор вероятных перестановок и комбинаций нуклеотидных элементов обеспечивает возможность фиксировать в структуре молекулы РНК огромный объем информации: теоретически рассчитанный объем этой информации составляет 10 -1020 бит, что значительно перекрывает реальный объем человеческой памяти. Процесс фиксации информации в нервной клетке находит отражение в синтезе белка, в молекулу которого вводится соответствующий следовой отпечаток изменений в молекуле РНК. При этом молекула белка становится чувствительной к специфическому узору импульсного потока, тем самым она как бы узнает тот афферентный сигнал, который закодирован в этом импульсном паттерне. В результате происходит освобождение медиатора в соответствующем синапсе, приводящее к передаче информации с одной нервной клетки на другую в системе нейронов, ответственных за фиксацию, хранение и воспроизведение информации.

Возможным субстратом долговременной памяти являются некоторые пептиды гормональной природы, простые белковые вещества, специфический белок S-100. К таким пептидам, стимулирующим, например, условно-рефлекторный механизм обучения, относятся некоторые гормоны (АКТГ, соматотропный гормон, вазопрессин и др.).

Интересная гипотеза об иммунохимическом механизме формирования памяти предложена И. П. Ашмариным. Гипотеза основана на признании важной роли активной иммунной реакции в консолидации, формировании долгосрочной памяти. Суть этого представления состоит в следующем: в результате метаболических процессов на синаптических мембранах при реверберации возбуждения на стадии формирования кратковременной памяти образуются вещества, играющие роль антигена для антител, вырабатываемых в глиальных клетках. Связывание антитела с антигеном происходит при участии стимуляторов образования медиаторов или ингибитора ферментов, разрушающих, расщепляющих эти стимулирующие вещества.

Значительное место в обеспечении нейрофизиологических механизмов долговременной памяти отводится глиальным клеткам (Галамбус, А. И. Ройтбак), число которых в центральных нервных образованиях на порядок превышает число нервных клеток. Предполагается следующий механизм участия глиальных клеток в осуществлении условно-рефлекторного механизма научения. На стадии образования и упрочения условного рефлекса в прилегающих к нервной клетке глиальных клетках усиливается синтез миелина, который окутывает концевые тонкие разветвления аксонного отростка и тем самым облегчает проведение по ним нервных импульсов, в результате чего повышается эффективность синаптической передачи возбуждения. В свою очередь стимуляция образования миелина происходит в результате деполяризации мембраны олигодендроцита (глиальной клетки) под влиянием поступающего нервного импульса. Таким образом, в основе долговременной памяти могут лежать сопряженные изменения в нервно-глиальном комплексе центральных нервных образований.

Возможность избирательного выключения кратковременной памяти без нарушения долговременной и избирательного воздействия на долговременную память в отсутствие каких-либо нарушений краткосрочной памяти обычно рассматривается как свидетельство разной природы лежащих в их основе нейрофизиологических механизмов. Косвенным доказательством наличия определенных различий в механизмах кратковременной и долговременной памяти являются особенности расстройств памяти при повреждении структур мозга. Так, при некоторых очаговых поражениях мозга (поражения височных зон коры, структур гиппокампа) при его сотрясении наступают расстройства памяти, выражающиеся в потере способности запоминать текущие события или события недавнего прошлого (произошедшие незадолго до воздействия, вызвавшего данную патологию) при сохранении памяти на прежние, давно случившиеся события. Однако ряд других воздействий оказывает однотипное влияние и на кратковременную, и на долговременную память. По-видимому, несмотря на некоторые заметные различия физиологических и биохимических механизмов, ответственных за формирование и проявление кратковременной и долговременной памяти, в их природе намного больше общего, чем различного; их можно рассматривать как последовательные этапы единого механизма фиксации и упрочения следовых процессов, протекающих в нервных структурах под влиянием повторяющихся или постоянно действующих сигналов.

В формировании и осуществлении высших функций мозга очень важное значение имеет общебиологическое свойство фиксации, хранения и воспроизведения информации, объединяемое понятием память. Память как основа процессов обучения и мышления включает в себя четыре тесно связанных между собой процесса: запоминание, хранение, узнавание, воспроизведение.

Виды памяти классифицируют по форме проявления (образная, эмоциональная, логическая, или словесно-логическая), по временной характеристике, или продолжительности (мгновенная, кратковременная, долговременная).

Образная память проявляется формированием, хранением и воспроизведением ранее воспринятого образа реального сигнала, его нервной модели. Под эмоциональной памятью понимают воспроизведение некоторого пережитого ранее эмоционального состояния при повторном предъявлении сигнала, вызвавшем первичное возникновение такого эмоционального состояния. Логическая (словесно-логическая, семантическая) память — память на словесные сигналы, обозначающие как внешние объекты и события, так и вызванные ими ощущения и представления.

Мгновенная (иконическая) память заключается в образовании мгновенного отпечатка, следа действующего стимула в рецепторной структуре. Стирание следа памяти происходит за 100—150 миллисекунд. Биологическое значение иконической памяти заключается в обеспечении анализаторных структур мозга возможностью выделения отдельных признаков и свойств сенсорного сигнала, распознавания образа.

Кратковременная память При достаточной силе действующего стимула иконическая память переходит в категорию краткосрочной (кратковременной) памяти. Кратковременная память — оперативная память, обеспечивающая выполнение текущих поведенческих и мыслительных операций. В основе кратковременной памяти лежит повторная многократная циркуляция импульсных разрядов по круговым замкнутым цепям нервных клеток. Кольцевые структуры могут быть образованы как в пределах одного и того же нейрона, так и в пределах нескольких. В результате многократного прохождения импульсов по этим кольцевым структурам в последних постепенно образуются стойкие изменения, закладывающие основу последующего формирования долгосрочной памяти. В этих кольцевых структурах могут участвовать не только возбуждающие, но и тормозящие нейроны. Продолжительность кратковременной памяти составляет секунды, минуты после непосредственного действия соответствующего сообщения, явления, предмета. Реверберационная гипотеза природы кратковременной памяти допускает наличие замкнутых кругов циркуляции импульсного возбуждения как внутри коры большого мозга, так и между корой и подкорковыми образованиями (в частности, таламокортикальные нервные круги). Внутрикорковые и таламокортикальные реверберационные круги как структурная основа нейрофизиологического механизма краткосрочной памяти образованы корковыми пирамидными клетками V—VI слоев преимущественно лобных и теменных областей коры большого мозга.

В осуществлении кратковременной памяти участвуют гиппокамп и лимбическая система. Реализация феномена краткосрочной памяти практически не требует и реально не связана с существенными химическими и структурными изменениями в нейронах и синапсах, так как для соответствующих изменений в синтезе матричных РНК требуется большее время. Важную роль играют ионные токи, возникающие в области синаптической передачи, длятся несколько секунд.

Превращение краткосрочной памяти в долговременную (консолидация памяти) в общем виде обусловлено наступлением стойких изменений синаптической проводимости как результат повторного возбуждения нервных клеток. В основе долговременной (долгосрочной) памяти лежат сложные химические процессы синтеза белковых молекул в клетках головного мозга. Одним из таких факторов может служить известный феномен посттетанической потенциации. Раздражение афферентных нервных структур приводит к достаточно длительному (десятки минут) повышению проводимости мотонейронов спинного мозга). Это значит, что изменения, возникающие в постсинаптических мембранах служат основой для образования следов памяти, что отражается затем изменение белкового субстрата нейронов.

В и с о ч ная к ор а участвует в запечатлении и хранении образной информации. Гиппокамп играет роль входного фильтра, извлекает из памяти следы под влиянием мотиваци-онного возбуждения, участвует в извлечении следов памяти. Ретикулярная формация включается в про-цессы формирования энграмм.

На протяжении жизни человека его память становится вместилищем огромного количества информации: в течение 60 лет человек способен воспринять 10 в шестнадцатой степени бит информации, из которой реально используется не более 5—10 %. Не все, что воспринимается, переживается или делается человеком, сохраняется в памяти, значительная часть воспринятой информации со временем забывается. Забывание проявляется в невозможности узнать, припомнить что-либо или в виде ошибочного узнавания, припоминания. Забывание в ряде случаев может носить положительный характер, например память на отрицательные сигналы, неприятные события.

В структурной организации нервной системы принято выделять центральную нервную систему (ЦНС) и периферическую. ЦНС в свою очередь включает в себя спинной мозг и головной мозг. Все остальные нервные структуры входят в периферическую систему. Высший отдел ЦНС – головной мозг состоит из мозгового ствола, большого мозга и мозжечка. Большой мозг представлен двумя полушариями, наружная поверхность которых покрыта серым веществом – корой. Кора составляет важнейшую часть головного мозга, являясь материальным субстратом высшей психической деятельности и регулятором всех жизненных функций организма.

А.Р. Лурия определил три основных функциональных блока мозга, участие которых необходимо для осуществления любого вида психической деятельности.

Первый блок – активации и тонуса . Анатомически он представлен сетевым образованием в стволовых отделах мозга – ретикулярной формацией, которая регулирует уровень активности коры от бодрствующего состояния до утомления и сна. Полноценная деятельность предполагает активное состояние человека, лишь в условиях оптимального бодрствования человек может успешно воспринимать информацию, планировать свое поведение и осуществлять намеченные программы действий.

Второй блок – приема, переработки и хранения информации . Он включает в себя задние отделы больших полушарий. В затылочные зоны поступает информация от зрительного анализатора – иногда их называют зрительной корой. Височные отделы отвечают за переработку слуховой информации – это так называемая слуховая кора. Теменные отделы коры связаны с общей чувствительностью, осязанием. Блок имеет иерархическое строение и состоит из корковых полей трех типов: первичные принимают и перерабатывают импульсы от периферийных отделов, во вторичных происходит аналитическая переработка информации, в третичных осуществляется аналитико-синтетическая обработка информации, поступающей от разных анализаторов, – этот уровень обеспечивает наиболее сложные формы психической деятельности.

Третий блок – программирования, регуляции и контроля. Блок расположен преимущественно в лобных долях мозга. Здесь ставятся цели, формируются программы собственной активности, осуществляется контроль за их протеканием и успешностью выполнения.

Совместная работа всех трех функциональных блоков мозга составляет необходимое условие осуществления любой психической деятельности человека.

Представляя мозговые механизмы психической деятельности, следует остановиться на вопросе о межполушарной асимметрии мозга. Работа больших полушарий построена по контрлатеральному принципу, т. е. левое полушарие отвечает за правую сторону телесной организации человека, правое полушарие – за левую. Установлено, что и в функциональном отношении оба полушария неравнозначны. Функциональная асимметрия, которая понимается как различное участие левого и правого полушария в осуществлении психической деятельности, представляет собой одну из фундаментальных закономерностей работы мозга человека и животных.

В осуществлении любой психической деятельности участвует весь мозг в целом, однако разные полушария выполняют различную дифференцированную роль в осуществлении каждой психической функции. Например, в результате экспериментальных и клинических исследований было обнаружено, что правое и левое полушария различаются в стратегии переработки информации. Стратегия правого полушария состоит в целостном одномоментном восприятии предметов и явлений, эта способность воспринимать целое раньше его частей лежит в основе творческого мышления и воображения. Левое полушарие осуществляет последовательную рациональную обработку информации. Проблема межполушарной асимметрии и межполушарного взаимодействия далека от своего решения и требует дальнейших экспериментальных и теоретических исследований.

Изучение мозговых механизмов, обеспечивающих психические процессы, не приводит к однозначному пониманию природы психического. Простого указания на мозг и нервную систему как на материальный субстрат психических процессов недостаточно для решения вопроса о характере взаимоотношения психического и нейрофизиологического.

Русский физиолог И.П. Павлов поставил перед собой задачу раскрыть сущность психического объективными физиологическими методами исследования. Ученый пришел к выводу, что единицами поведения являются безусловные рефлексы как реакции на строго определенные раздражители из внешней среды и условные рефлексы как реакции на первоначально безразличный раздражитель, который становится небезразличным вследствие его неоднократного сочетания с безусловным раздражителем. Условные рефлексы осуществляются высшими отделами мозга и основываются на образующихся между нервными структурами временных связях.

Важным вкладом в решение проблемы нейрофизиологических механизмов психики являются работы отечественных ученых Н.А. Бернштейна и П.К. Анохина .

Н.А. Бернштейн изучал естественные движения человека и их физиологическую основу. До Н.А. Бернштейна механизм движения описывался схемой рефлекторной дуги: 1) прием внешних воздействий; 2) процесс их центральной переработки; 3) двигательная реакция. Н.А. Бернштейн предложил новый принцип нейрофизиологического управления движениями, который был назван принципом сенсорных коррекций. В его основу легло положение о том, что движения управляются не только и не столько эфферентными импульсами (командами, исходящими от центральных отделов к периферии), а в первую очередь – афферентными (сигналами о внешнем мире, которые поступают в мозг в каждый момент выполнения движения). Именно афферентные сигналы и составляют «следящее устройство», которое обеспечивает непрерывную коррекцию движения, отбирая и меняя нужные траектории, регулируя систему напряжений и ускорений в соответствии с меняющимися условиями выполнения действия.

Но афферентные импульсы являются лишь частью того, что составляет механизм организации произвольных движений. Существен тот факт, что движения и действия человека не «реактивны», – они активны, целенаправленны и меняются в зависимости от замысла. Принцип активности противопоставляется принципу реактивности, согласно которому тот или иной акт, движение, действие определяется внешним стимулом и осуществляется по модели условного рефлекса, и преодолевает понимание процесса жизнедеятельности как процесса непрерывного приспособления к среде. Главное содержание процесса жизни организма – это не приспособление к среде, а реализация внутренних программ. В ходе такой реализации организм неизбежно преобразует среду.

П.К. Анохиным была создана теория функциональных систем, явившаяся одной из первых моделей подлинной психологически ориентированной физиологии. Согласно положениям этой теории физиологическую основу психической деятельности составляют особые формы организации нервных процессов. Они складываются при включении отдельных нейронов и рефлексов в целостные функциональные системы, которые обеспечивают целостные поведенческие акты.

Исследования ученого показали, что поведение индивида определяется не отдельным сигналом, а афферентным синтезом всей доходящей до него в данный момент информации. Афферентные синтезы запускают в ход сложные виды поведения. В итоге П.К. Анохин пришел к выводу о необходимости пересмотра классических представлений о рефлекторной дуге. Он разработал учение о функциональной системе, под которой понималась динамическая организация структур и процессов организма. Согласно этому учению движущей силой поведения могут быть не только непосредственно воспринимаемые воздействия, но и представления о будущем, о цели действия, ожидаемый эффект поведенческого акта. При этом поведение вовсе не заканчивается ответной реакцией организма. Ответная реакция создает систему «обратной афферентации», сигнализирующей об успехе или неуспехе действия, составляет акцептор результата действия .

Процесс сличения модели будущего с эффектом выполненного действия является существенным механизмом поведения. Только при условии их полного совпадения действие прекращается. Если же действие оказывается неудачным, то происходит «рассогласование» модели будущего и результата действия. Поэтому действие продолжается, в него вносятся соответствующие коррективы. Рефлекторную дугу П.К. Анохин заменил более сложной схемой рефлекторного кольца, объясняющей саморегулирующийся характер поведения.

Теория функциональных систем П.К. Анохина создала новую – системную – методологию изучения целостных поведенческих актов. В работах ученого было показано, что любая целостная деятельность организма осуществляется только при избирательной интеграции многих частных физиологических механизмов в единую функциональную систему.

Несмотря на неоспоримость того, что мозг является органом психического отражения, взаимосвязь психического и нейрофизиологического должна рассматриваться с позиций самостоятельности и специфичности каждого из этих процессов. Психическое невозможно свести к обеспечивающим его морфофункциональным структурам, работа мозга не является содержанием психики. Психическое отражает не физиологические процессы, протекающие в организме человека, а объективную реальность. Специфическое содержание психического заключается в представленности образов мира и субъективного отношения к нему. Как писал философ А.Г. Спиркин, «в коре мозга нейрохирург видит не яркие мысли наподобие духовного пламени, а всего лишь серое вещество».

Нейрофизиологические механизмы.

Восприятие

Восприятие - сложный активный процесс, включающий анализ и синтез поступающей информации. В осуществлении процесса восприятия принимают участие различные области коры, каждая из которых специализированно участвует в операциях приема, анализа, переработки и оценки поступающей информации.

Постепенность и неодновременность созревания областей коры в процессе онтогенеза определяют существенные особенности процесса восприятия в различные возрастные периоды. Определенная степень зрелости первичных проекционных корковых зон к моменту рождения ребенка создает условие для осуществления на уровне коры больших полушарий приема информации и элементарного анализа качественных признаков сигнала уже в период новорожденности. К 2 - 3 месяцам резко увеличивается разрешающая способность зрительного анализатора. Периоды бурного развития зрительной функции отличаются высокой пластичностью, повышенной чувствительностью к факторам внешней среды.

Создание образа предмета связано с функцией ассоциативных областей. По мере их созревания они начинают включаться в анализ поступающей информации. В раннем детском возрасте до 3 - 4 лет включительно ассоциативные зоны дублируют функцию проекционной коры. Качественный скачок в формировании системы восприятия отмечен после 5 лет. К 5 - 6 годам заднеассоциативные зоны вовлекаются в процесс опознания сложных изображений. Существенно облегчается опознание сложных, ранее незнакомых предметов, сличение их с эталоном. Это дает основание рассматривать дошкольный возраст как сенситивный (особо чувствительный) период развития зрительного восприятия.

В школьном возрасте система зрительного восприятия продолжает усложняться и совершенствоваться за счет включения переднеассоциативных областей. Эти области, ответственные за принятие решения, оценку значимости поступающей информации и организацию адекватного реагирования, обеспечивают формирование произвольного избирательного восприятия. Существенные изменения избирательного реагирования с учетом значимости стимула отмечены к 10 - 11 годам. Недостаточность этого процесса в начальных классах обуславливает затруднение в выделении основной значимой информации и отвлечение несущественными деталями.

Структурно-функциональное созревание лобных областей продолжается в подростковом возрасте и определяет совершенствование системной организации процесса восприятия. Заключительный этап развития воспринимающей системы обеспечивает оптимальные условия для адекватного реагирования на внешние воздействия.

Внимание

Внимание - повышает уровень активации коры больших полушарий. Признаки непроизвольного внимания обнаруживаются уже в период новорожденности в виде элементарной ориентировочной реакции на экстренное применение раздражителя. Эта реакция еще лишена характерного исследовательского компонента (он проявляется в 2 - 3 месяца), но она уже проявляется в определенных изменениях электрической активности мозга, вегетативных реакциях. Особенности активационных процессов определяют специфику произвольного внимания в грудном, так же как и в младшем дошкольном возрасте, - внимание маленького ребенка привлекают в основном эмоциональные раздражители. По мере формирования системы восприятия речи формируется социальная форма внимания, опосредованная речевой инструкцией. Однако вплоть до 5-летнего возраста эта форма внимания легко оттесняется непроизвольным вниманием, возникающим на новые привлекательные раздражители.

Существенные изменения корковой активации, лежащей в основе внимания, отмечены в 6 - 7-летнем возрасте. Существенно возрастает роль речевой инструкции в формировании произвольного внимания. Вместе с тем в этом возрасте еще велико значение эмоционального фактора. Качественные сдвиги в формировании нейрофизиологических механизмов внимания отмечены в 9 - 10 лет.

В начале подросткового периода (12 - 13 лет) нейроэндокринные сдвиги, связанные с началом полового созревания, приводят к изменению корково-подкоркового взаимодействия, ослаблению корковых регулирующих влияний на активационные процессы - ослабляется внимание, нарушаются механизмы произвольной регуляции функции. К концу подросткового периода с завершением полового созревания нейрофизиологические механизмы внимания соответствуют таковым взрослого человека.

Память

Память - свойство нервной системы, которое проявляется в способности накапливать, хранить и воспроизводить поступающую информацию. Механизмы памяти претерпевают значительные изменения с возрастом.

Память, основанная на хранении следов возбуждения в системе условных рефлексов, формируется на ранних этапах развития. Относительная простота системы памяти в детском возрасте определяет устойчивость, прочность условных рефлексов, выработанных в раннем детстве. По мере структурно-функционального созревания мозга происходит значительное усложнение системы памяти. Это может привести к неравномерному и неоднозначному изменению показателей памяти с возрастом. Так, в младшем школьном возрасте объем памяти достоверно возрастает, а скорость запоминания уменьшается, увеличиваясь затем к подростковому возрасту. Созревание высших корковых формаций с возрастом определяет постепенность развития и совершенствования словестно-логической абстрактной памяти.

Мотивация

Мотивация - активные состояния мозговых структур, побуждающие совершать действия (акты поведения), направленные на удовлетворение своих потребностей. С мотивациями неразрывно связаны эмоции.

В формировании мотиваций и эмоций важная роль принадлежит лимбической системе мозга, включающей структуры разных отделов головного мозга. Роль эмоций особенно велика в детском возрасте, когда доминируют процессы корковой эмоциональной активации. Эмоции детей из-за слабости контроля со стороны высших отделов ЦНС неустойчивы, их внешние проявления несдержанны. Созревание высших отделов ЦНС в младшем школьном возрасте расширяет возможность формирования познавательных потребностей и способствует совершенствованию регуляции эмоций. В этом немалую роль играют воспитательные воздействия, направленные на развитие внутреннего торможения.

Сон и бодрствование

В процессе развития ребенка изменяется соотношение между продолжительностью бодрствования и сна. Прежде всего уменьшается продолжительность сна. Продолжительность суточного сна новорожденного - 21 час, во втором полугодии жизни ребенок спит 14 часов, в возрасте 4 лет - 12 часов, 10 лет - 10 часов. Потребность в суточном сне в юношеском возрасте, как и у взрослых, составляет 7 - 8 часов.

1.4. Нейрофизиологические механизмы.

1.4.1. Восприятие – сложный активный процесс, включающий анализ и синтез поступающей информации. В осуществлении процесса восприятия принимают участие различные области коры, каждая из которых специализированно участвует в операциях приема, анализа, переработки и оценки поступающей информации.

Постепенность и неодновременность созревания областей коры в процессе онтогенеза определяют существенные особенности процесса восприятия в различные возрастные периоды. Определенная степень зрелости первичных проекционных корковых зон к моменту рождения ребенка создает условие для осуществления на уровне коры больших полушарий приема информации и элементарного анализа качественных признаков сигнала уже в период новорожденности. К 2 – 3 месяцам резко увеличивается разрешающая способность зрительного анализатора. Периоды бурного развития зрительной функции отличаются высокой пластичностью, повышенной чувствительностью к факторам внешней среды.

Создание образа предмета связано с функцией ассоциативных областей. По мере их созревания они начинают включаться в анализ поступающей информации. В раннем детском возрасте до 3 – 4 лет включительно ассоциативные зоны дублируют функцию проекционной коры. Качественный скачок в формировании системы восприятия отмечен после 5 лет. К 5 – 6 годам заднеассоциативные зоны вовлекаются в процесс опознания сложных изображений. Существенно облегчается опознание сложных, ранее незнакомых предметов, сличение их с эталоном. Это дает основание рассматривать дошкольный возраст как сенситивный (особо чувствительный) период развития зрительного восприятия.

В школьном возрасте система зрительного восприятия продолжает усложняться и совершенствоваться за счет включения переднеассоциативных областей. Эти области, ответственные за принятие решения, оценку значимости поступающей информации и организацию адекватного реагирования, обеспечивают формирование произвольного избирательного восприятия. Существенные изменения избирательного реагирования с учетом значимости стимула отмечены к 10 – 11 годам. Недостаточность этого процесса в начальных классах обуславливает затруднение в выделении основной значимой информации и отвлечение несущественными деталями.

Структурно-функциональное созревание лобных областей продолжается в подростковом возрасте и определяет совершенствование системной организации процесса восприятия. Заключительный этап развития воспринимающей системы обеспечивает оптимальные условия для адекватного реагирования на внешние воздействия.

1.4.2. Внимание – повышает уровень активации коры больших полушарий. Признаки непроизвольного внимания обнаруживаются уже в период новорожденности в виде элементарной ориентировочной реакции на экстренное применение раздражителя. Эта реакция еще лишена характерного исследовательского компонента (он проявляется в 2 – 3 месяца), но она уже проявляется в определенных изменениях электрической активности мозга, вегетативных реакциях. Особенности активационных процессов определяют специфику произвольного внимания в грудном, так же как и в младшем дошкольном возрасте, - внимание маленького ребенка привлекают в основном эмоциональные раздражители. По мере формирования системы восприятия речи формируется социальная форма внимания, опосредованная речевой инструкцией. Однако вплоть до 5-летнего возраста эта форма внимания легко оттесняется непроизвольным вниманием, возникающим на новые привлекательные раздражители.

Существенные изменения корковой активации, лежащей в основе внимания, отмечены в 6 – 7-летнем возрасте. Существенно возрастает роль речевой инструкции в формировании произвольного внимания. Вместе с тем в этом возрасте еще велико значение эмоционального фактора. Качественные сдвиги в формировании нейрофизиологических механизмов внимания отмечены в 9 – 10 лет.

В начале подросткового периода (12 – 13 лет) нейроэндокринные сдвиги, связанные с началом полового созревания, приводят к изменению корково-подкоркового взаимодействия, ослаблению корковых регулирующих влияний на активационные процессы – ослабляется внимание, нарушаются механизмы произвольной регуляции функции. К концу подросткового периода с завершением полового созревания нейрофизиологические механизмы внимания соответствуют таковым взрослого человека.

1.4.3. Память – свойство нервной системы, которое проявляется в способности накапливать, хранить и воспроизводить поступающую информацию. Механизмы памяти претерпевают значительные изменения с возрастом.

Память, основанная на хранении следов возбуждения в системе условных рефлексов, формируется на ранних этапах развития. Относительная простота системы памяти в детском возрасте определяет устойчивость, прочность условных рефлексов, выработанных в раннем детстве. По мере структурно-функционального созревания мозга происходит значительное усложнение системы памяти. Это может привести к неравномерному и неоднозначному изменению показателей памяти с возрастом. Так, в младшем школьном возрасте объем памяти достоверно возрастает, а скорость запоминания уменьшается, увеличиваясь затем к подростковому возрасту. Созревание высших корковых формаций с возрастом определяет постепенность развития и совершенствования словестно-логической абстрактной памяти.

1.4.4. Мотивация – активные состояния мозговых структур, побуждающие совершать действия (акты поведения), направленные на удовлетворение своих потребностей. С мотивациями неразрывно связаны эмоции.

В формировании мотиваций и эмоций важная роль принадлежит лимбической системе мозга, включающей структуры разных отделов головного мозга. Роль эмоций особенно велика в детском возрасте, когда доминируют процессы корковой эмоциональной активации. Эмоции детей из-за слабости контроля со стороны высших отделов ЦНС неустойчивы, их внешние проявления несдержанны. Созревание высших отделов ЦНС в младшем школьном возрасте расширяет возможность формирования познавательных потребностей и способствует совершенствованию регуляции эмоций. В этом немалую роль играют воспитательные воздействия, направленные на развитие внутреннего торможения.

1.4.5. Сон и бодрствование. В процессе развития ребенка изменяется соотношение между продолжительностью бодрствования и сна. Прежде всего уменьшается продолжительность сна. Продолжительность суточного сна новорожденного – 21 час, во втором полугодии жизни ребенок спит 14 часов, в возрасте 4 лет – 12 часов, 10 лет – 10 часов. Потребность в суточном сне в юношеском возрасте, как и у взрослых, составляет 7 – 8 часов.


Возрастает. В этом немалую роль играют воспитательные воздействия, направленные на совершенствование внутреннего торможения. Литература 1. Бадалян Л.О. Невропатология. – М.: Академия, 2000. – 384 с. 2. Беляев Н.Г. Возрастная физиология. – Ставрополь: СГУ, 1999. – 103 с. 3. Дубровская Н.В. Психофизиология ребенка. – М.: Владос, 2000. – 200 с. 4. Обреимова Н.И., Петрухин А.С. ...

... (Уилл). Эффективные методы оживления, применяемые в клинике, есть результат экспериментальной разработки проблемы терминальных состояний у животных (Ф. А. Андреев, В. А. Неговский и др.). История. Патологическая физиология как самостоятельная экспериментальная наука стала оформляться с середины 19 в., но истоки ее в виде умозрительного учения о болезни можно проследить с древнейших времен. На...

Нагрузок человека, как Дж. Бергстрем, Б. Солтен и Ф. Голлник. Теперь, когда мы выяснили историческую основу физиологии физических нагрузок – прародительницы спортивной физиологии, мы можем приступить к изучению сущности физиологии физических нагрузок и спорта. Cрочные физиологические реакции на физическую нагрузку Начиная изучать физиологию физических нагрузок и спорта, необходимо, прежде...

Стали предметом горячих дискуссий, развернувшихся среди русских психологов, физиологов, философов и даже представителей политических кругов в конце XIX столетия. Самое важное влияние на развитие русской физиологии и психологии оказали работы Ивана Павлова (1849-1936), являющегося одной из выдающихся фигур в мировой науке. Величайшее значение работ Павлова для психологии заключается в том, что...