Использование метода кругов Эйлера (диаграмм Эйлера–Венна) при решении задач в курсе информатики и ИКТ. Диаграмма Венна — прием критического мышления Построение диаграмм эйлера венна

ДИАГРАММА ВЕННА, схематическое представление отношений между математическими МНОЖЕСТВАМИ или логическими утверждениями, названное по имени английского логика Джона Венна (1834 1923). Множества изображаются в виде геометрических фигур, обычно… …

диаграмма Венна - Иллюстрирующая логические операции и операции булевой алгебры Boolean algebra Тематики нефтегазовая промышленность EN Venn diagram … Справочник технического переводчика

диаграмма Венна - Venn o diagrama statusas T sritis automatika atitikmenys: angl. Venn diagram vok. Venn Diagramm, n rus. диаграмма Венна, f pranc. diagramme de Venn, m ryšiai: sinonimas – Veno diagrama … Automatikos terminų žodynas

ДИАГРАММА ЭЙЛЕРА, простая диаграмма, используемая в логике для демонстрации силлогизмов. Классы предметов изображаются в виде кругов, и утверждения типа «Некоторое а находится в b» представляется двумя пересекающимися кругами, представляющими а и … Научно-технический энциклопедический словарь

Графический способ изображения формул математич. логики, прежде всего формул исчисления высказываний. В. д. ппеременных классич. логики высказываний представляет собой такой набор замкнутых контуров (го меоморфных окружностям), к рый разбивает… … Математическая энциклопедия

Пример диаграммы Эйлера. B живое существо, A человек, C неживая вещь. Круги Эйлера геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления. Изобретены Эйлером. Используется в… … Википедия

Пример диаграммы Эйлера. B живое существо, A человек, C неживая вещь. Круги Эйлера геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления. Изобретены Эйлером. Используется в… … Википедия

ДИАГРАММЫ ВEHHА графический способ задания и анализа логико математических теорий и их формул. Строятся путем разбиения части плоскости на ячейки (подмножества) замкнутыми контурами (кривьми Жордана). В ячейках представляется информация,… … Философская энциклопедия

Пример кругов Эйлера. Буквами обозначены, например, свойства: живое существо, человек, неживая вещь Круги Эйлера геометрическая схема, с помощью которой можно изобразить отношения … Википедия

Чтобы лучше представить себе множество, можно использовать рисунок, называемый диаграммой Эйлера_Венна.Это замкнутая линия, внутри которой расположены элементы данного множества, а с наружи -элементы, не пренадлежащие множеству.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Диаграмма Венна Знаки ∈ и ∉ 3 класс Математика Петерсон Л.Г.

Любое множество А можно изобразить графически в виде замкнутой линии. Считается, что элементы множества (А) расположены внутри этой линии, а все элементы, которые не принадлежат множеству (А), - снаружи. Такая схема называется диаграммой Венна. a 2 m Например, диаграмму множества В = { 2, m , } можно нарисовать так: В

Знаки ∈ и ∉ a 2 m Предложение «Число 2 принадлежит множеству В» записывают короче: 2 ∈ В. Знак ∈ читают: «принадлежит» Предложение «Буква а не принадлежит множеству В» также можно записать короче: а ∉ В. Знак ∉ читают: «не принадлежит» В

e 8 b A 4 На рисунке изображена диаграмма множества А. Какие элементы принадлежат множеству А, а какие ему не принадлежат? b … A e … A … A 8 … A 4 … A … A ∈ ∈ ∈ ∉ ∉ ∉ ∉ ∉ Прочти ещё раз полученные записи.

Отметь элементы, d, 10 , 5 на диаграмме множества С, если известно, что: ∈ С ∉ С С d ∉ C 10 ∈ C ∈ C 5 ∉ С d 10 5

Имеется множество М = {а, b, c, }. Какой знак поставить: ∈ или ∉ ? a … M … M c … M … M … M 8 … M ∈ ∈ ∈ ∉ ∉ ∉

D – множество двузначных чисел. Являются ли числа 26, 307, 8, 940, 15, 60 элементами множества D ? 26 … D 8 … D 15 … D 307 … D 940 … D 60 … D ∈ ∈ ∈ ∉ ∉ ∉ Отметим эти числа на диаграмме. 26 307 8 940 15 60 Назовите самое маленькое и самое большое число множества D. D = { 10 , …, …, … 99}

А – множество бабочек, а В – множество роз. Как построить диаграммы множеств А и В? Сколько бабочек принадлежит множеству А? Сколько роз принадлежит множеству В? Сколько общих элементов у множеств А и В?

Задание на дом. Стр.12 №11, 12

История

Определение 1

Леонарду Эйлеру задали вопрос: можно ли, прогуливаясь по Кенигсбергу, обойти через все мосты города, дважды не проходя ни через один из них. План города с семью мостами прилагался.

В письме знакомому итальянскому математику Эйлер дал краткое и красивое решение проблемы кенигсбергских мостов: при таком расположении задача неразрешима. При этом он указал, что вопрос показался ему интересным, т.к. «для его решения недостаточны ни геометрия, ни алгебра...» .

При решении многих задач Л. Эйлер изображал множества с помощью кругов, поэтому они и получили название «круги Эйлера» . Этим методом ещё ранее пользовался немецкий философ и математик Готфрид Лейбниц, который использовал их для геометрического объяснения логических связей между понятиями, но при этом чаще использовал линейные схемы. Эйлер же достаточно основательно развил метод. Особенно знаменитыми графические методы стали благодаря английскому логику и философу Джону Венну, который ввел диаграммы Венна и подобные схемы часто называют диаграммами Эйлера-Венна . Используются они во многих областях, например, в теории множеств, теории вероятности, логике, статистике и информатике.

Принцип построения диаграмм

До сих пор диаграммы Эйлера-Венна широко используют для схематичного изображения всех возможных пересечений нескольких множеств. На диаграммах изображают все $2^n$ комбинаций n свойств. Например, при $n=3$ на диаграмме изображают три круга с центрами в вершинах равностороннего треугольника и одинаковым радиусом, который приближенно равен длине стороны треугольника.

Логические операции задают таблицы истинности. На диаграмме изображается круг с названием множества, которое он представляет, например, $A$. Область в середине круга $A$ будет отображать истинность выражения $A$, а область вне круга -- ложь. Для отображения логической операции заштриховывают только те области, в которых значения логической операции при множествах $A$ и $B$ истинны.

Например, конъюнкция двух множеств $A$ и $B$ истинна только в том случае, когда оба множества истинны. В таком случае на диаграмме результатом конъюнкции $A$ и $B$ будет область в середине кругов, которая одновременно принадлежит множеству $A$ и множеству $B$ (пересечению множеств).

Рисунок 1. Конъюнкция множеств $A$ и $B$

Использование диаграмм Эйлера-Венна для доказательства логических равенств

Рассмотрим, как применяется метод построения диаграмм Эйлера-Венна для доказательства логических равенств.

Докажем закон де Моргана, который описывается равенством:

Доказательство:

Рисунок 4. Инверсия $A$

Рисунок 5. Инверсия $B$

Рисунок 6. Конъюнкция инверсий $A$ и $B$

После сравнения области для отображения левой и правой части видим, что они равны. Из этого следует справедливость логического равенства. Закон де Моргана доказан с помощью диаграмм Эйлера-Венна.

Решение задачи поиска информации в Интернет с помощью диаграмм Эйлера-Венна

Для осуществления поиска информации в Интернет удобно использовать поисковые запросы с логическими связками, аналогичными по смыслу союзам "и", "или" русского языка. Смысл логических связок становится более понятным, если проиллюстрировать их с помощью диаграмм Эйлера-Венна.

Пример 1

В таблице приведены примеры запросов к поисковому серверу. Каждый запрос имеет свой код -- буква от $A$ до $B$. Нужно расположить коды запросов в порядке убывания количества найденных страниц по каждому запросу.

Рисунок 7.

Решение:

Построим для каждого запроса диаграмму Эйлера-Венна:

Рисунок 8.

Ответ: БВА.

Решение логической содержательной задачи с помощью диаграмм Эйлера-Венна

Пример 2

За зимние каникулы из $36$ учеников класса $2$ не были ни в кино, ни в театре, ни в цирке. В кино сходило $25$ человек, в театр -- $11$, в цирк -- $17$ человек; и в кино, и в театре -- $6$; и в кино и в цирк -- $10$; и в театр и в цирк -- $4$.

Сколько человек побывало и в кино, и в театре, и в цирке?

Решение:

Обозначим количество ребят, побывавших и в кино, и в театре, и в цирке -- $x$.

Построим диаграмму и узнаем количество ребят в каждой области:

Рисунок 9.

Не были ни в театре, ни в кино, ни в цирке -- $2$ чел.

Значит, $36 - 2 = 34$ чел. побывали на мероприятиях.

В кино и театр сходило $6$ чел., значит, только в кино и театр ($6 - x)$ чел.

В кино и цирк сходило $10$ чел., значит, только в кино и цирк ($10 - x$) чел.

В театр и цирк сходило $4$ чел., значит, только в театре и цирк ($4 - x$) чел.

В кино сходило $25$ чел., значит, из них только в кино сходило $25 - (10 - x) - (6 - x) - x = (9+x)$.

Аналогично, только в театр сходило ($1+x$) чел.

Только в цирк сходило ($3+x$) чел.

Итак, сходили в театр, кино и цирк:

$(9+x)+(1+x)+(3+x)+(10-x)+(6-x)+(4-x)+x = 34$;

Т.е. только один человек сходил и в театр, и в кино, и в цирк.

Если вы думаете, что ничего не знаете о кругах Эйлера, вы ошибаетесь. На самом деле вы наверняка не раз с ними сталкивались, просто не знали, как это называется. Где именно? Схемы в виде кругов Эйлера легли в основу многих популярных интернет-мемов (растиражированных в сети изображений на определенную тему).

Давайте вместе разберемся, что же это за круги, почему они так называются и почему ими так удобно пользоваться для решения многих задач.

Происхождение термина

– это геометрическая схема, которая помогает находить и/или делать более наглядными логические связи между явлениями и понятиями. А также помогает изобразить отношения между каким-либо множеством и его частью.

Пока не очень понятно, верно? Посмотрите на этот рисунок:

На рисунке представлено множество – все возможные игрушки. Некоторые из игрушек являются конструкторами – они выделены в отдельный овал. Это часть большого множества «игрушки» и одновременно отдельное множество (ведь конструктором может быть и «Лего», и примитивные конструкторы из кубиков для малышей). Какая-то часть большого множества «игрушки» может быть заводными игрушками. Они не конструкторы, поэтому мы рисуем для них отдельный овал. Желтый овал «заводной автомобиль» относится одновременно к множеству «игрушки» и является частью меньшего множества «заводная игрушка». Поэтому и изображается внутри обоих овалов сразу.

Ну что, так стало понятнее? Именно поэтому круги Эйлера – это тот метод, который наглядно демонстрирует: лучше один раз увидеть, чем сто раз услышать. Его заслуга в том, что наглядность упрощает рассуждения и помогает быстрее и проще получить ответ.

Автор метода - ученый Леонард Эйлер (1707-1783). Он так и говорил о названных его именем схемах: «круги подходят для того, чтобы облегчить наши размышления». Эйлер считается немецким, швейцарским и даже российским математиком, механиком и физиком. Дело в том, что он много лет проработал в Петербургской академии наук и внес существенный вклад в развитие российской науки.

До него подобным принципом при построении своих умозаключений руководствовался немецкий математик и философ Готфрид Лейбниц.

Метод Эйлера получил заслуженное признание и популярность. И после него немало ученых использовали его в своей работе, а также видоизменяли на свой лад. Например, чешский математик Бернард Больцано использовал тот же метод, но с прямоугольными схемами.

Свою лепту внес также немецкий математике Эрнест Шредер. Но главные заслуги принадлежат англичанину Джону Венну. Он был специалистом в логике и издал книгу «Символическая логика», в которой подробно изложил свой вариант метода (использовал преимущественно изображения пересечений множеств).

Благодаря вкладу Венна метод даже называют диаграммами Венна или еще Эйлера-Венна.

Зачем нужны круги Эйлера?

Круги Эйлера имеют прикладное назначение, то есть с их помощью на практике решаются задачи на объединение или пересечение множеств в математике, логике, менеджменте и не только.

Если говорить о видах кругов Эйлера, то можно разделить их на те, что описывают объединение каких-то понятий (например, соотношение рода и вида) – мы их рассмотрели на примере в начале статьи.

А также на те, что описывают пересечение множеств по какому-то признаку. Таким принципом руководствовался Джон Венн в своих схемах. И именно он лежит в основе многих популярных в интернете мемов. Вот вам один из примеров таких кругов Эйлера:

Забавно, правда? И главное, все сразу становится понятно. Можно потратить много слов, объясняя свою точку зрения, а можно просто нарисовать простую схему, которая сразу расставит все по местам.

Кстати, если вы не можете определиться, какую профессию выбрать, попробуйте нарисовать схему в виде кругов Эйлера. Возможно, чертеж вроде этого поможет вам определиться с выбором:

Те варианты, которые окажутся на пересечении всех трех кругов, и есть профессия, которая не только сможет вас прокормить, но и будет вам нравиться.

Решение задач с помощью кругов Эйлера

Давайте рассмотрим несколько примеров задач, которые можно решить с помощью кругов Эйлера.

Вот на этом сайте - http://logika.vobrazovanie.ru/index.php?link=kr_e.html Елена Сергеевна Саженина предлагает интересные и несложные задачи, для решения которых потребуется метод Эйлера. Используя логику и математику, разберем одну из них.

Задача про любимые мультфильмы

Шестиклассники заполняли анкету с вопросами об их любимых мультфильмах. Оказалось, что большинству из них нравятся «Белоснежка и семь гномов», «Губка Боб Квадратные Штаны» и «Волк и теленок». В классе 38 учеников. «Белоснежка и семь гномов» нравится 21 ученику. Причем трем среди них нравятся еще и «Волк и теленок», шестерым - «Губка Боб Квадратные Штаны», а один ребенок одинаково любит все три мультфильма. У «Волка и теленка» 13 фанатов, пятеро из которых назвали в анкете два мультфильма. Надо определить, скольким же шестиклассникам нравится «Губка Боб Квадратные Штаны».

Решение:

Так как по условиям задачи у нас даны три множества, чертим три круга. А так как по ответам ребят выходит, что множества пересекаются друг с другом, чертеж будет выглядеть так:

Мы помним, что по условиям задачи среди фанатов мультфильма «Волк и теленок» пятеро ребят выбрали два мультфильма сразу:

Выходит, что:

21 – 3 – 6 – 1 = 11 – ребят выбрали только «Белоснежку и семь гномов».

13 – 3 – 1 – 2 = 7 – ребят смотрят только «Волк и теленок».

Осталось только разобраться, сколько шестиклассников двум другим вариантам предпочитает мультфильм «Губка Боб Квадратные Штаны». От всего количества учеников отнимаем всех тех, кто любит два других мультфильма или выбрал несколько вариантов:

38 – (11 + 3 + 1 + 6 + 2 + 7) = 8 – человек смотрят только «Губка Боб Квадратные Штаны».

Теперь смело можем сложить все полученные цифры и выяснить, что:

мультфильм «Губка Боб Квадратные Штаны» выбрали 8 + 2 + 1 + 6 = 17 человек. Это и есть ответ на поставленный в задаче вопрос.

А еще давайте рассмотрим задачу , которая в 2011 году была вынесена на демонстрационный тест ЕГЭ по информатике и ИКТ (источник - http://eileracrugi.narod.ru/index/0-6).

Условия задачи:

В языке запросов поискового сервера для обозначения логической операции «ИЛИ» используется символ «|», а для логической операции «И» - символ «&».

В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети интернет.

Запрос Найдено страниц (в тысячах)
Крейсер | Линкор 7000
Крейсер 4800
Линкор 4500

Какое количество страниц (в тысячах) будет найдено по запросу Крейсер & Линкор ?

Считается, что все вопросы выполняются практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.

Решение:

При помощи кругов Эйлера изобразим условия задачи. При этом цифры 1, 2 и 3 используем, чтобы обозначить полученные в итоге области.

Опираясь на условия задачи, составим уравнения:

  1. Крейсер | Линкор: 1 + 2 + 3 = 7000
  2. Крейсер: 1 + 2 = 4800
  3. Линкор: 2 + 3 = 4500

Чтобы найти Крейсер & Линкор (обозначенный на чертеже как область 2), подставим уравнение (2) в уравнение (1) и выясним, что:

4800 + 3 = 7000, откуда получаем 3 = 2200.

Теперь этот результат мы можем подставить в уравнение (3) и выяснить, что:

2 + 2200 = 4500, откуда 2 = 2300.

Ответ: 2300 - количество страниц, найденных по запросу Крейсер & Линкор.

Как видите, круги Эйлера помогают быстро и просто решить даже достаточно сложные или просто запутанные на первый взгляд задачи.

Заключение

Полагаю, нам удалось убедить вас, что круги Эйлера – не просто занимательная и интересная штука, но и весьма полезный метод решения задач. Причем не только абстрактных задач на школьный уроках, но и вполне себе житейских проблем. Выбора будущей профессии, например.

Вам еще наверняка будет любопытно узнать, что в современной массовой культуре круги Эйлера нашли отражение не только в виде мемов, но и в популярных сериалах. Таких, как «Теория большого взрыва» и «4исла».

Используйте это полезный и наглядный метод для решения задач. И обязательно расскажите о нем друзьям и одноклассникам. Для этого под статьей есть специальные кнопки.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Некоторые задачи удобно и наглядно решать с помощью диаграмм Эйлера-Венна. Например, задачи на множества. Если Вы не знаете, что такое диаграммы Эйлера-Венна и как их строить, то сначала прочтите .

Теперь разберем типовые задачи о множествах.

Задача 1.

В школе с углубленным изучением иностранных языков провели опрос среди 100 учащихся. Ученикам задали вопрос: "Какие иностранные языки вы изучаете?". Выяснилось, что 48 учеников изучают английский, 26 - французский, 28 - немецкий. 8 школьников изучают английский и немецкий, 8 - английский и французский, 13 - французский и немецкий. 24 школьника не изучают ни английский, ни французский, ни немецкий. Сколько школьников, прошедших опрос, изучают одновременно три языка: английский, французский и немецкий?

Ответ: 3.

Решение:

  • множество школьников, изучающих английский ("А");
  • множество школьников изучающих французский ("Ф");
  • множество школьников изучающих немецкий ("Н").

Изобразим с помощью диаграммы Эйлера-Венна то, что нам дано по условию.


Обозначим искомую область А=1, Ф=1, Н=1 как "х" (в таблице ниже область №7). Выразим остальные области через х.

0) Область А=0, Ф=0, Н=0 : 24 школьника - дано по условию задачи.

1) Область А=0, Ф=0, Н=1 : 28-(8-х+х+13-х)=7+х школьников.

2) Область А=0, Ф=1, Н=0 : 26-(8-х+х+13-х)=5+х школьников.

3) Область А=0, Ф=1, Н=1 : 13-х школьников.

4) Область А=1, Ф=0, Н=0 : 48-(8-х+х+8-х)=32+х школьников.

5) Область А=1, Ф=0, Н=1 : 8-х школьников.

6) Область А=1, Ф=1, Н=0 : 8-х школьников.


области
А
Ф
Н
Количество
школьников
0
0
0
0
24
1
0
0
1
7+х
2
0
1
0
5+х
3
0
1
1
13-х
4
1
0
0
32+х
5
1
0
1
8-х
6
1
1
0
8-х
7
1
1
1
х

Определим х:

24+7+(х+5)+х+(13-х)+(32+х)+(8-х)+(8-х)+х=100.

х=100-(24+7+5+13+32+8+8)=100-97=3.

Получили, что 3 школьника изучают одновременно три языка: английский, французский и немецкий.

Так будет выглядеть диаграмма Эйлера-Венна при известном х:


Задача 2.

На олимпиаде по математике школьникам предложили решить три задачи: одну по алгебре, одну по геометрии, одну по тригонометрии. В олимпиаде участвовало 1000 школьников. Результаты олимпиады были следующие: задачу по алгебре решили 800 участников, по геометрии - 700, по тригонометрии - 600. 600 школьников решили задачи по алгебре и геометрии, 500 - по алгебре и тригонометрии, 400 - по геометрии и тригонометрии. 300 человек решили задачи по алгебре, геометрии и тригонометрии. Сколько школьников не решило ни одной задачи?

Ответ: 100.

Решение:

Сначала определим множества и введем обозначения. Их три:

  • множество задач по алгебре ("А");
  • множество задач по геометрии ("Г");
  • множество задач по тригонометрии ("Т").

Изобразим то, что нам надо найти:

Определим количество школьников для всех возможных областей.

Обозначим искомую область А=0, Г=0, Т=0 как "х" (в таблице ниже область №0).

Найдем остальные области:

1) Область А=0, Г=0, Т=1 : школьников нет.

2) Область А=0, Г=1, Т=0 : школьников нет.

3) Область А=0, Г=1, Т=1 : 100 школьников.

4) Область А=1, Г=0, Т=0 : школьников нет.

5) Область А=1, Г=0, Т=1 : 200 школьников.

6) Область А=1, Г=1, Т=0 : 300 школьников.

7) Область А=1, Г=1, Т=1 : 300 школьников.

Запишем значения областей в таблицу:


области
А
Г
Т
Количество
школьников
0
0
0
0
х
1
0
0
1
0
2
0
1
0
0
3
0
1
1
100
4
1
0
0
0
5
1
0
1
200
6
1
1
0
300
7
1
1
1
300

Изобразим значения для всех областей с помощью диаграммы:


Определим х:

х=U-(A V Г V Т), где U-универсум.

A V Г V Т=0+0+0+300+300+200+100=900.

Получили, что 100 школьников не решило ни одной задачи.

Задача 3.

На олимпиаде по физике школьникам предложили решить три задачи: одну по кинематике, одну по термодинамике, одну по оптике. Результаты олимпиады были следующие: задачу по кинематике решили 400 участников, по термодинамике - 350, по оптике - 300. 300 школьников решили задачи по кинематике и термодинамике, 200 - по кинематике и оптике, 150 - по термодинамике и оптике. 100 человек решили задачи по кинематике, термодинамике и оптике. Сколько школьников решило две задачи?

Ответ: 350.

Решение:

Сначала определим множества и введем обозначения. Их три:

  • множество задач по кинематике ("К");
  • множество задач по термодинамике ("Т");
  • множество задач по оптике ("О").

Изобразим с помощью диаграммы Эйлера-Венна то, что нам дано по условию:

Изобразим то, что нам надо найти:

Определим количество школьников для всех возможных областей:

0) Область К=0, Т=0, О=0 : не определено.

1) Область К=0,Т=0, О=1 : 50 школьников.

2) Область К=0, Т=1, О=0 : школьников нет.

3) Область К=0, Т=1, О=1 : 50 школьников.

4) Область К=1, Т=0, О=0 : школьников нет.

5) Область К=1, Т=0, О=1 : 100 школьников.

6) Область К=1, Т=1, О=0 : 200 школьников.

7) Область К=1, Т=1, О=1 : 100 школьников.

Запишем значения областей в таблицу:


области
К
Т
О
Количество
школьников
0
0
0
0
-
1
0
0
1
50
2
0
1
0
0
3
0
1
1
50
4
1
0
0
0
5
1
0
1
100
6
1
1
0
200
7
1
1
1
100

Изобразим значения для всех областей с помощью диаграммы:


Определим х.

х=200+100+50=350.

Получили, 350 школьников решило две задачи.

Задача 4.

Среди прохожих провели опрос. Был задан вопрос: "Какое домашнее животное у Вас есть?". По результатам опроса выяснилось, что у 150 человек есть кошка, у 130 - собака, у 50 - птичка. У 60 человек есть кошка и собака, у 20 - кошка и птичка, у 30 - собака и птичка. У 70 человек вообще нет домашнего животного. У 10 человек есть и кошка, и собака, и птичка. Сколько прохожих приняли участие в опросе?

Ответ: 300.

Решение:

Сначала определим множества и введем обозначения. Их три:

  • множество людей, у которых есть кошка ("К");
  • множество людей, у которых есть собака ("С");
  • множество людей, у которых есть птичка ("П").

Изобразим с помощью диаграммы Эйлера-Венна то, что нам дано по условию:

Изобразим то, что нам надо найти:


Определим количество человек для всех возможных областей:

0) Область К=0, С=0, П=0 : 70 человек.

1) Область К=0, С=0, П=1 : 10 человек.

2) Область К=0, С=1, П=0 : 50 человек.

3) Область К=0, С=1, П=1 : 20 человек.

4) Область К=1, С=0, П=0 : 80 человек.

5) Область К=1, Т=0, О=1 : 10 человек.

6) Область К=1, Т=1, О=0 : 50 человек.

7) Область К=1, Т=1, О=1 : 10 человек.

Запишем значения областей в таблицу:


области
К
C
П
Количество
человек
0
0
0
0
70
1
0
0
1
10
2
0
1
0
50
3
0
1
1
20
4
1
0
0
80
5
1
0
1
10
6
1
1
0
50
7
1
1
1
10

Изобразим значения для всех областей с помощью диаграммы:


Определим х:

х=U (универсум)

U=70+10+50+20+80+10+50+10=300.

Получили, что 300 человек приняли участие в опросе.

Задача 5.

На одну специальность в одном из ВУЗов поступало 120 человек. Абитуриенты сдавали три экзамена: по математике, по информатике и русскому языку. Математику сдали 60 человек, информатику - 40. 30 абитуриентов сдали математику и информатику, 30 - математику и русский язык, 25 - информатику и русский язык. 20 человек сдали все три экзамена, а 50 человек - провалили. Сколько абитуриентов сдали русский язык?